cs.AI updates on arXiv.org 10月10日 12:08
可证明公平AI框架:克服偏见消除方法局限
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于OWL 2 QL本体工程的框架,通过系统去除敏感信息及其代理,以实现可证明的公平AI。通过逻辑推理定义敏感属性及其代理,构建sigma代数G,利用Delbaen Majumdar最优传输方法生成独立变量,确保AI在贷款审批等任务中的公平性。

arXiv:2510.08086v1 Announce Type: new Abstract: This paper presents a framework for provably fair AI that overcomes the limits of current bias mitigation methods by systematically removing all sensitive information and its proxies. Using ontology engineering in OWL 2 QL, it formally defines sensitive attributes and infers their proxies through logical reasoning, constructing a sigma algebra G that captures the full structure of biased patterns. Fair representations are then obtained via Delbaen Majumdar optimal transport, which generates variables independent of G while minimizing L2 distance to preserve accuracy. This guarantees true independence rather than mere decorrelation. By modeling bias as dependence between sigma algebras, compiling ontological knowledge into measurable structures, and using optimal transport as the unique fair transformation, the approach ensures complete fairness in tasks like loan approval, where proxies such as ZIP code reveal race. The result is a certifiable and mathematically grounded method for trustworthy AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI公平性 偏见消除 OWL 2 QL 最优传输
相关文章