cs.AI updates on arXiv.org 10月10日
基于LLM的论文综述生成框架SurveyG
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SurveyG,一种基于大型语言模型的论文综述生成框架,通过整合层次引文图,将结构化和上下文知识嵌入到综述生成过程中,实现更全面、结构化的综述。

arXiv:2510.07733v1 Announce Type: new Abstract: Large language models (LLMs) are increasingly adopted for automating survey paper generation \cite{wang2406autosurvey, liang2025surveyx, yan2025surveyforge,su2025benchmarking,wen2025interactivesurvey}. Existing approaches typically extract content from a large collection of related papers and prompt LLMs to summarize them directly. However, such methods often overlook the structural relationships among papers, resulting in generated surveys that lack a coherent taxonomy and a deeper contextual understanding of research progress. To address these shortcomings, we propose \textbf{SurveyG}, an LLM-based agent framework that integrates \textit{hierarchical citation graph}, where nodes denote research papers and edges capture both citation dependencies and semantic relatedness between their contents, thereby embedding structural and contextual knowledge into the survey generation process. The graph is organized into three layers: \textbf{Foundation}, \textbf{Development}, and \textbf{Frontier}, to capture the evolution of research from seminal works to incremental advances and emerging directions. By combining horizontal search within layers and vertical depth traversal across layers, the agent produces multi-level summaries, which are consolidated into a structured survey outline. A multi-agent validation stage then ensures consistency, coverage, and factual accuracy in generating the final survey. Experiments, including evaluations by human experts and LLM-as-a-judge, demonstrate that SurveyG outperforms state-of-the-art frameworks, producing surveys that are more comprehensive and better structured to the underlying knowledge taxonomy of a field.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 论文综述 生成框架 引文图 知识结构
相关文章