arXiv:2510.07423v1 Announce Type: new Abstract: Large language models (LLMs) have empowered AI agents to tackle increasingly complex tasks. However, most existing agents remain limited to static planning and brittle interactions, falling short of true collaboration or adaptive reasoning. We introduce ProSEA, a modular, general-purpose multi-agent framework designed for iterative problem solving through exploration and plan evolution. ProSEA features a hierarchical architecture in which a Manager Agent orchestrates domain-specialized Expert Agents, decomposes tasks, and adaptively replans based on structured feedback from failed attempts. Unlike prior systems, ProSEA agents report not only success or failure but also detailed reasons for failure and newly discovered constraints, enabling dynamic plan refinement informed by exploratory traces. The framework operates autonomously but supports seamless integration with human collaborators when needed. Experiments on the challenging FinanceBench benchmark demonstrate that ProSEA, even without human feedback, outperforms state-of-the-art baselines and achieves robust performance across reasoning-heavy tasks. These results underscore ProSEA's potential as a foundation for more transparent, adaptive, and human-aligned AI agents.
