cs.AI updates on arXiv.org 10月10日
真理感知解码:神经网络语言生成与知识库的融合
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出真理感知解码(TAD)方案,通过在解码时引入语义守卫,实现神经网络语言生成与知识库的同步。方案通过基于约束的语义、局部可能性优势证明、事实风险量化及多代理操作演算等创新,有效减少幻觉现象,同时保证吞吐量,构建了大规模实证模型与形式验证之间的桥梁。

arXiv:2510.07331v1 Announce Type: new Abstract: This paper introduces Truth-Aware Decoding (TAD), a verification-oriented decoding scheme that aligns neural language generation with knowledge bases. Situated in the tradition of probabilistic program semantics for sequence models, TAD augments modern instruction-tuned systems with a lattice of semantic guards that operate at decode time. Our contributions are fourfold: (i) a constraint-based semantics that renders oracle filtering as a program-logic judgment, (ii) a proof that greedy selection enjoys local likelihood dominance under sound and complete guards (Theorem 2.7), (iii) an entropy-style invariant that quantifies factual risk via knowledge-aware safe mass, and (iv) a multi-agent operational calculus with verified Lean artefacts to certify implementation behaviour. Numerical and algorithmic case studies confirm that the resulting guardrails reduce hallucinations without sacrificing throughput, yielding a pragmatic bridge between large-scale empirical models and formal verification.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 知识库 真理感知解码 语义守卫 形式验证
相关文章