cs.AI updates on arXiv.org 10月09日 12:15
minimalist Bayesian框架应用于优化算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种 minimalist Bayesian 框架,通过仅对感兴趣的参数(如最优解的位置)设定先验,并利用轮廓似然消除干扰参数,从而应用于优化算法,如凸优化、连续臂Lipschitz臂老虎机等。

arXiv:2509.07030v2 Announce Type: replace-cross Abstract: The Bayesian paradigm offers principled tools for sequential decision-making under uncertainty, but its reliance on a probabilistic model for all parameters can hinder the incorporation of complex structural constraints. We introduce a minimalist Bayesian framework that places a prior only on the component of interest, such as the location of the optimum. Nuisance parameters are eliminated via profile likelihood, which naturally handles constraints. As a direct instantiation, we develop a MINimalist Thompson Sampling (MINTS) algorithm. Our framework accommodates structured problems, including continuum-armed Lipschitz bandits and dynamic pricing. It also provides a probabilistic lens on classical convex optimization algorithms such as the center of gravity and ellipsoid methods. We further analyze MINTS for multi-armed bandits and establish near-optimal regret guarantees.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Bayesian Optimization Algorithm
相关文章