cs.AI updates on arXiv.org 10月09日 12:14
森林地上生物量估算:机器学习与遥感技术最新结合研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统分析了80余篇相关研究中25篇符合严格纳入标准的研究论文,探讨了机器学习方法和遥感数据在森林地上生物量估算中的应用,识别了常用方法及组合,为森林生物量估算提供参考。

arXiv:2411.17624v2 Announce Type: replace-cross Abstract: Quantifying forest aboveground biomass (AGB) is crucial for informing decisions and policies that will protect the planet. Machine learning (ML) and remote sensing (RS) techniques have been used to do this task more effectively, yet there lacks a systematic review on the most recent working combinations of ML methods and multiple RS sources, especially with the consideration of the forests' ecological characteristics. This study systematically analyzed 25 papers that met strict inclusion criteria from over 80 related studies, identifying all ML methods and combinations of RS data used. Random Forest had the most frequent appearance (88\% of studies), while Extreme Gradient Boosting showed superior performance in 75\% of the studies in which it was compared with other methods. Sentinel-1 emerged as the most utilized remote sensing source, with multi-sensor approaches (e.g., Sentinel-1, Sentinel-2, and LiDAR) proving especially effective. Our findings provide grounds for recommending which sensing sources, variables, and methods to consider using when integrating ML and RS for forest AGB estimation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 遥感技术 森林地上生物量 估算方法 研究综述
相关文章