cs.AI updates on arXiv.org 10月09日 12:14
PINNs在FP-PDE求解中的应用与误差分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了利用物理信息神经网络(PINNs)近似求解Fokker-Planck偏微分方程(FP-PDE)的可行性,并分析了PINN的近似误差。通过理论框架构建了紧致的误差界限,并提出了实用的误差界限,验证了PINNs在求解高维、非线性、混沌系统时的有效性和计算速度优势。

arXiv:2410.22371v3 Announce Type: replace-cross Abstract: Stochastic differential equations are commonly used to describe the evolution of stochastic processes. The state uncertainty of such processes is best represented by the probability density function (PDF), whose evolution is governed by the Fokker-Planck partial differential equation (FP-PDE). However, it is generally infeasible to solve the FP-PDE in closed form. In this work, we show that physics-informed neural networks (PINNs) can be trained to approximate the solution PDF. Our main contribution is the analysis of PINN approximation error: we develop a theoretical framework to construct tight error bounds using PINNs. In addition, we derive a practical error bound that can be efficiently constructed with standard training methods. We discuss that this error-bound framework generalizes to approximate solutions of other linear PDEs. Empirical results on nonlinear, high-dimensional, and chaotic systems validate the correctness of our error bounds while demonstrating the scalability of PINNs and their significant computational speedup in obtaining accurate PDF solutions compared to the Monte Carlo approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

物理信息神经网络 Fokker-Planck方程 误差分析 PINNs 数值求解
相关文章