cs.AI updates on arXiv.org 10月09日 12:14
LD3M:基于扩散模型的潜在数据集蒸馏方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为LD3M的基于扩散模型的数据集蒸馏方法,旨在通过预训练的潜在扩散模型学习梯度,以优化合成样本。该方法在多个图像数据集上提升了下游任务的准确率,并提供了相关代码。

arXiv:2403.03881v4 Announce Type: replace-cross Abstract: Dataset distillation seeks to condense datasets into smaller but highly representative synthetic samples. While diffusion models now lead all generative benchmarks, current distillation methods avoid them and rely instead on GANs or autoencoders, or, at best, sampling from a fixed diffusion prior. This trend arises because naive backpropagation through the long denoising chain leads to vanishing gradients, which prevents effective synthetic sample optimization. To address this limitation, we introduce Latent Dataset Distillation with Diffusion Models (LD3M), the first method to learn gradient-based distilled latents and class embeddings end-to-end through a pre-trained latent diffusion model. A linearly decaying skip connection, injected from the initial noisy state into every reverse step, preserves the gradient signal across dozens of timesteps without requiring diffusion weight fine-tuning. Across multiple ImageNet subsets at 128x128 and 256x256, LD3M improves downstream accuracy by up to 4.8 percentage points (1 IPC) and 4.2 points (10 IPC) over the prior state-of-the-art. The code for LD3M is provided at https://github.com/Brian-Moser/prune_and_distill.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据集蒸馏 扩散模型 LD3M 图像识别 准确率提升
相关文章