cs.AI updates on arXiv.org 10月09日 12:09
机器翻译:新型prompt优化方法提升性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对机器翻译任务的prompt优化方法,利用小参数模型和基于回译的策略,降低训练成本,显著提升翻译效果。

arXiv:2510.06695v1 Announce Type: cross Abstract: In recent years, the growing interest in Large Language Models (LLMs) has significantly advanced prompt engineering, transitioning from manual design to model-based optimization. Prompts for LLMs generally comprise two components: the \textit{instruction}, which defines the task or objective, and the \textit{input}, which is tailored to the instruction type. In natural language generation (NLG) tasks such as machine translation, the \textit{input} component is particularly critical, while the \textit{instruction} component tends to be concise. Existing prompt engineering methods primarily focus on optimizing the \textit{instruction} component for general tasks, often requiring large-parameter LLMs as auxiliary tools. However, these approaches exhibit limited applicability for tasks like machine translation, where the \textit{input} component plays a more pivotal role. To address this limitation, this paper introduces a novel prompt optimization method specifically designed for machine translation tasks. The proposed approach employs a small-parameter model trained using a back-translation-based strategy, significantly reducing training overhead for single-task optimization while delivering highly effective performance. With certain adaptations, this method can also be extended to other downstream tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器翻译 prompt优化 回译策略
相关文章