cs.AI updates on arXiv.org 10月09日
基于风险感知的安全认证方法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对自主学习的控制系统风险感知安全认证方法,针对状态/输入延迟和区间矩阵不确定性等现实风险,利用局部扇区界限和正性结构模型神经网络控制器,推导出保证局部指数稳定性的线性、延迟无关证书,并采用先进的IQC神经网络验证流程进行性能基准测试。

arXiv:2510.06661v1 Announce Type: cross Abstract: We present a risk-aware safety certification method for autonomous, learning enabled control systems. Focusing on two realistic risks, state/input delays and interval matrix uncertainty, we model the neural network (NN) controller with local sector bounds and exploit positivity structure to derive linear, delay-independent certificates that guarantee local exponential stability across admissible uncertainties. To benchmark performance, we adopt and implement a state-of-the-art IQC NN verification pipeline. On representative cases, our positivity-based tests run orders of magnitude faster than SDP-based IQC while certifying regimes the latter cannot-providing scalable safety guarantees that complement risk-aware control.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

风险感知 安全认证 神经网络控制器
相关文章