cs.AI updates on arXiv.org 10月09日 12:08
StaR-KVQA:基于结构化推理的视觉问答系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了基于知识库的视觉问答系统,提出了一种名为StaR-KVQA的新方法,通过结构化推理跟踪和路径 grounding 自然语言解释,提高推理的透明性和可验证性,显著提升了问答系统的准确性和可解释性。

arXiv:2510.06638v1 Announce Type: cross Abstract: Knowledge-based Visual Question Answering (KVQA) requires models to ground entities in images and reason over factual knowledge. We study its implicit-knowledge variant, IK-KVQA, where a multimodal large language model (MLLM) is the sole knowledge source, without external retrieval. Yet, MLLMs lack explicit reasoning supervision and produce inconsistent justifications, and generalize poorly after standard supervised fine-tuning (SFT). We present StaR-KVQA (Structured Reasoning Traces for IK-KVQA), which supervises structured traces - dual symbolic relation paths plus path-grounded natural-language explanations - so that reasoning becomes transparent and verifiable. With one open-source MLLM, StaR-KVQA constructs and selects path-grounded reasoning traces to form a trace-enriched dataset, then fine-tunes via structured self-distillation to align generation with supervision; no external retrievers, verifiers, or curated knowledge bases (KBs) are used, traces are built offline, and inference is a single autoregressive pass. Across benchmarks, StaR-KVQA improves both accuracy and interpretability, achieving up to +11.3% higher answer accuracy on OK-VQA over the strongest baseline while exhibiting robust cross-domain generalization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉问答 知识库 结构化推理 可解释性 准确率
相关文章