cs.AI updates on arXiv.org 10月09日 12:08
轻量控制器增强ARDM提高数据同化精度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种轻量控制器增强的自回归扩散模型(ARDM),用于提高数据同化精度。通过预览未来扩散模型输出并学习逐步控制策略,该模型在混沌时空偏微分方程(PDE)数据同化中展现出优于现有方法的稳定性和精度。

arXiv:2510.06637v1 Announce Type: cross Abstract: Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments pretrained ARDMs with a lightweight controller network, trained offline by previewing future ARDM rollouts and learning stepwise controls that anticipate upcoming observations under a terminal cost objective. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), a setting where existing methods are often computationally prohibitive and prone to forecast drift under sparse observations. Our approach reduces DA inference to a single forward rollout with on-the-fly corrections, avoiding expensive adjoint computations and/or optimizations during inference. We demonstrate that our method consistently outperforms four state-of-the-art baselines in stability, accuracy, and physical fidelity across two canonical PDEs and six observation regimes. We will release code and checkpoints publicly.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据同化 自回归扩散模型 控制器增强 混沌时空偏微分方程
相关文章