cs.AI updates on arXiv.org 10月09日
SDQM:提升合成数据质量评估的新标准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为SDQM的合成数据质量指标,用于评估对象检测任务中的数据质量,无需模型训练即可实现。SDQM能够有效提高合成数据集的生成和选择效率,并在实验中表现出与YOLOv11模型mAP分数的强相关性。

arXiv:2510.06596v1 Announce Type: cross Abstract: The performance of machine learning models depends heavily on training data. The scarcity of large-scale, well-annotated datasets poses significant challenges in creating robust models. To address this, synthetic data generated through simulations and generative models has emerged as a promising solution, enhancing dataset diversity and improving the performance, reliability, and resilience of models. However, evaluating the quality of this generated data requires an effective metric. This paper introduces the Synthetic Dataset Quality Metric (SDQM) to assess data quality for object detection tasks without requiring model training to converge. This metric enables more efficient generation and selection of synthetic datasets, addressing a key challenge in resource-constrained object detection tasks. In our experiments, SDQM demonstrated a strong correlation with the mean Average Precision (mAP) scores of YOLOv11, a leading object detection model, while previous metrics only exhibited moderate or weak correlations. Additionally, it provides actionable insights for improving dataset quality, minimizing the need for costly iterative training. This scalable and efficient metric sets a new standard for evaluating synthetic data. The code for SDQM is available at https://github.com/ayushzenith/SDQM

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SDQM 合成数据 数据质量 对象检测 YOLOv11
相关文章