cs.AI updates on arXiv.org 10月09日 12:07
量子NLP新突破:CLAQS文本分类算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为CLAQS的量子文本分类算法,该算法采用紧凑、全量子化设计,有效提高了量子NLP的准确性和稳定性,并在多个数据集上超越了经典Transformer模型。

arXiv:2510.06532v1 Announce Type: cross Abstract: Quantum compute is scaling fast, from cloud QPUs to high throughput GPU simulators, making it timely to prototype quantum NLP beyond toy tasks. However, devices remain qubit limited and depth limited, training can be unstable, and classical attention is compute and memory heavy. This motivates compact, phase aware quantum token mixers that stabilize amplitudes and scale to long sequences. We present CLAQS, a compact, fully quantum token mixer for text classification that jointly learns complex-valued mixing and nonlinear transformations within a unified quantum circuit. To enable stable end-to-end optimization, we apply l1 normalization to regulate amplitude scaling and introduce a two-stage parameterized quantum architecture that decouples shared token embeddings from a window-level quantum feed-forward module. Operating under a sliding-window regime with document-level aggregation, CLAQS requires only eight data qubits and shallow circuits, yet achieves 91.64% accuracy on SST-2 and 87.08% on IMDB, outperforming both classical Transformer baselines and strong hybrid quantum-classical counterparts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子NLP 文本分类 CLAQS 量子算法 Transformer
相关文章