cs.AI updates on arXiv.org 10月09日 12:07
Medix:基于中值运算的未标记数据OOD检测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Medix的新型框架,利用中值运算从未标记数据中识别潜在异常值,以增强OOD检测能力。通过理论分析和实证验证,Medix在开放世界设置中优于现有方法,证明了其有效性和理论洞察。

arXiv:2510.06505v1 Announce Type: cross Abstract: Out-of-distribution (OOD) detection plays a crucial role in ensuring the robustness and reliability of machine learning systems deployed in real-world applications. Recent approaches have explored the use of unlabeled data, showing potential for enhancing OOD detection capabilities. However, effectively utilizing unlabeled in-the-wild data remains challenging due to the mixed nature of both in-distribution (InD) and OOD samples. The lack of a distinct set of OOD samples complicates the task of training an optimal OOD classifier. In this work, we introduce Medix, a novel framework designed to identify potential outliers from unlabeled data using the median operation. We use the median because it provides a stable estimate of the central tendency, as an OOD detection mechanism, due to its robustness against noise and outliers. Using these identified outliers, along with labeled InD data, we train a robust OOD classifier. From a theoretical perspective, we derive error bounds that demonstrate Medix achieves a low error rate. Empirical results further substantiate our claims, as Medix outperforms existing methods across the board in open-world settings, confirming the validity of our theoretical insights.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

OOD检测 未标记数据 中值运算 机器学习 开放世界
相关文章