cs.AI updates on arXiv.org 10月09日 12:07
MobilityGen:深度生成模型助力人类流动性研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了MobilityGen,一种深度生成模型,用于生成大型空间尺度上跨越数日至数周的真实人类流动性轨迹。该模型结合行为属性与环境背景,再现了关键模式,如位置访问的尺度规律、活动时间分配以及旅行方式和目的地选择的耦合演化。它反映了时空变异性,并生成符合建筑环境的多样、合理和新颖的流动性模式。

arXiv:2510.06473v1 Announce Type: cross Abstract: Understanding and modeling human mobility is central to challenges in transport planning, sustainable urban design, and public health. Despite decades of effort, simulating individual mobility remains challenging because of its complex, context-dependent, and exploratory nature. Here, we present MobilityGen, a deep generative model that produces realistic mobility trajectories spanning days to weeks at large spatial scales. By linking behavioral attributes with environmental context, MobilityGen reproduces key patterns such as scaling laws for location visits, activity time allocation, and the coupled evolution of travel mode and destination choices. It reflects spatio-temporal variability and generates diverse, plausible, and novel mobility patterns consistent with the built environment. Beyond standard validation, MobilityGen yields insights not attainable with earlier models, including how access to urban space varies across travel modes and how co-presence dynamics shape social exposure and segregation. Our work establishes a new framework for mobility simulation, paving the way for fine-grained, data-driven studies of human behavior and its societal implications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人类流动性 深度生成模型 MobilityGen 城市空间 社会影响
相关文章