cs.AI updates on arXiv.org 10月09日 12:07
评估迁移能力度量指标之不足
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文实证分析了广泛使用的基准设置在评估迁移能力度量指标方面的不足,揭示了当前评估协议与现实世界模型选择复杂性之间的关键脱节,并提出了构建更稳健、现实基准的建议。

arXiv:2510.06448v1 Announce Type: cross Abstract: Transferability estimation metrics are used to find a high-performing pre-trained model for a given target task without fine-tuning models and without access to the source dataset. Despite the growing interest in developing such metrics, the benchmarks used to measure their progress have gone largely unexamined. In this work, we empirically show the shortcomings of widely used benchmark setups to evaluate transferability estimation metrics. We argue that the benchmarks on which these metrics are evaluated are fundamentally flawed. We empirically demonstrate that their unrealistic model spaces and static performance hierarchies artificially inflate the perceived performance of existing metrics, to the point where simple, dataset-agnostic heuristics can outperform sophisticated methods. Our analysis reveals a critical disconnect between current evaluation protocols and the complexities of real-world model selection. To address this, we provide concrete recommendations for constructing more robust and realistic benchmarks to guide future research in a more meaningful direction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

迁移能力度量 基准设置 模型选择
相关文章