cs.AI updates on arXiv.org 10月09日
轨迹生成:Transformer模型提升GPS数据质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Trajectory Transformer的新型模型,利用Transformer架构进行条件信息嵌入和噪声预测,有效提升了基于GPS数据的轨迹生成质量,并缓解了传统方法中的偏差问题。

arXiv:2510.06291v1 Announce Type: cross Abstract: The widespread use of GPS devices has driven advances in spatiotemporal data mining, enabling machine learning models to simulate human decision making and generate realistic trajectories, addressing both data collection costs and privacy concerns. Recent studies have shown the promise of diffusion models for high-quality trajectory generation. However, most existing methods rely on convolution based architectures (e.g. UNet) to predict noise during the diffusion process, which often results in notable deviations and the loss of fine-grained street-level details due to limited model capacity. In this paper, we propose Trajectory Transformer, a novel model that employs a transformer backbone for both conditional information embedding and noise prediction. We explore two GPS coordinate embedding strategies, location embedding and longitude-latitude embedding, and analyze model performance at different scales. Experiments on two real-world datasets demonstrate that Trajectory Transformer significantly enhances generation quality and effectively alleviates the deviation issues observed in prior approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

轨迹生成 Transformer模型 GPS数据 噪声预测 数据质量
相关文章