cs.AI updates on arXiv.org 10月09日
XRec模型复现及优化分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文复现了Ma等人在2024年提出的XRec模型,并对其进行了优化。通过使用Llama 3代替GPT-3.5-turbo作为大型语言模型,对XRec进行了评估。研究通过修改输入嵌入或删除输出嵌入来优化模型,结果表明XRec能有效地生成个性化解释,并提高了其稳定性。

arXiv:2510.06275v1 Announce Type: cross Abstract: In this study, we reproduced the work done in the paper "XRec: Large Language Models for Explainable Recommendation" by Ma et al. (2024). The original authors introduced XRec, a model-agnostic collaborative instruction-tuning framework that enables large language models (LLMs) to provide users with comprehensive explanations of generated recommendations. Our objective was to replicate the results of the original paper, albeit using Llama 3 as the LLM for evaluation instead of GPT-3.5-turbo. We built on the source code provided by Ma et al. (2024) to achieve our goal. Our work extends the original paper by modifying the input embeddings or deleting the output embeddings of XRec's Mixture of Experts module. Based on our results, XRec effectively generates personalized explanations and its stability is improved by incorporating collaborative information. However, XRec did not consistently outperform all baseline models in every metric. Our extended analysis further highlights the importance of the Mixture of Experts embeddings in shaping the explanation structures, showcasing how collaborative signals interact with language modeling. Through our work, we provide an open-source evaluation implementation that enhances accessibility for researchers and practitioners alike. Our complete code repository can be found at https://github.com/julianbibo/xrec-reproducibility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

XRec模型 大型语言模型 个性化解释
相关文章