cs.AI updates on arXiv.org 10月09日
RareGraph-Synth:生成罕见病电子健康记录轨迹的扩散模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为RareGraph-Synth的知识引导连续时间扩散框架,用于生成罕见疾病的隐私保护合成电子健康记录(EHR)轨迹。该模型整合了多个公共资源,提高了生成轨迹的生物学合理性,同时保证了数据隐私。

arXiv:2510.06267v1 Announce Type: cross Abstract: We propose RareGraph-Synth, a knowledge-guided, continuous-time diffusion framework that generates realistic yet privacy-preserving synthetic electronic-health-record (EHR) trajectories for ultra-rare diseases. RareGraph-Synth unifies five public resources: Orphanet/Orphadata, the Human Phenotype Ontology (HPO), the GARD rare-disease KG, PrimeKG, and the FDA Adverse Event Reporting System (FAERS) into a heterogeneous knowledge graph comprising approximately 8 M typed edges. Meta-path scores extracted from this 8-million-edge KG modulate the per-token noise schedule in the forward stochastic differential equation, steering generation toward biologically plausible lab-medication-adverse-event co-occurrences while retaining score-based diffusion model stability. The reverse denoiser then produces timestamped sequences of lab-code, medication-code, and adverse-event-flag triples that contain no protected health information. On simulated ultra-rare-disease cohorts, RareGraph-Synth lowers categorical Maximum Mean Discrepancy by 40 percent relative to an unguided diffusion baseline and by greater than 60 percent versus GAN counterparts, without sacrificing downstream predictive utility. A black-box membership-inference evaluation using the DOMIAS attacker yields AUROC approximately 0.53, well below the 0.55 safe-release threshold and substantially better than the approximately 0.61 plus or minus 0.03 observed for non-KG baselines, demonstrating strong resistance to re-identification. These results suggest that integrating biomedical knowledge graphs directly into diffusion noise schedules can simultaneously enhance fidelity and privacy, enabling safer data sharing for rare-disease research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RareGraph-Synth 电子健康记录 罕见病 扩散模型 知识图谱
相关文章