cs.AI updates on arXiv.org 10月09日
离线EHR摘要系统:双设备架构及模型评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于嵌入式设备运行的离线电子健康记录(EHR)摘要系统,通过双设备架构和轻量级语言模型实现临床数据的快速摘要,保障患者隐私。系统采用检索和摘要两个阶段,通过预训练的语言模型在30秒内生成结构化摘要。

arXiv:2510.06263v1 Announce Type: cross Abstract: Electronic health records (EHRs) contain extensive unstructured clinical data that can overwhelm emergency physicians trying to identify critical information. We present a two-stage summarization system that runs entirely on embedded devices, enabling offline clinical summarization while preserving patient privacy. In our approach, a dual-device architecture first retrieves relevant patient record sections using the Jetson Nano-R (Retrieve), then generates a structured summary on another Jetson Nano-S (Summarize), communicating via a lightweight socket link. The summarization output is two-fold: (1) a fixed-format list of critical findings, and (2) a context-specific narrative focused on the clinician's query. The retrieval stage uses locally stored EHRs, splits long notes into semantically coherent sections, and searches for the most relevant sections per query. The generation stage uses a locally hosted small language model (SLM) to produce the summary from the retrieved text, operating within the constraints of two NVIDIA Jetson devices. We first benchmarked six open-source SLMs under 7B parameters to identify viable models. We incorporated an LLM-as-Judge evaluation mechanism to assess summary quality in terms of factual accuracy, completeness, and clarity. Preliminary results on MIMIC-IV and de-identified real EHRs demonstrate that our fully offline system can effectively produce useful summaries in under 30 seconds.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EHR摘要 双设备架构 离线系统 语言模型 隐私保护
相关文章