cs.AI updates on arXiv.org 10月09日 12:03
基于推理的智能搜索模型优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于推理的智能搜索模型,通过分析成功搜索轨迹,识别出四种有益推理行为,并采用行为预训练技术,显著提升了模型的搜索效果。

arXiv:2510.06534v1 Announce Type: new Abstract: Agentic search leverages large language models (LLMs) to interpret complex user information needs and execute a multi-step process of planning, searching, and synthesizing information to provide answers. This paradigm introduces unique challenges for LLMs' reasoning and agentic capabilities when interacting with retrieval systems and the broader web. In this paper, we propose a reasoning-driven LLM-based pipeline to study effective reasoning behavior patterns in agentic search. Using this pipeline, we analyze successful agentic search trajectories and identify four beneficial reasoning behaviors: Information Verification, Authority Evaluation, Adaptive Search, and Error Recovery. Based on these findings, we propose a technique called Behavior Priming to train more effective agentic search models. It synthesizes agentic search trajectories that exhibit these four behaviors and integrates them into the agentic search model through supervised fine-tuning (SFT), followed by standard reinforcement learning (RL). Experiments on three benchmarks (GAIA, WebWalker, and HLE) demonstrate that behavior priming yields over 35% gains in Llama3.2-3B and Qwen3-1.7B compared to directly training agentic search models with RL. Crucially, we demonstrate that the desired reasoning behaviors in the SFT data, rather than the correctness of the final answer, is the critical factor for achieving strong final performance after RL: fine-tuning on trajectories with desirable reasoning behaviors but incorrect answers leads to better performance than fine-tuning on trajectories with correct answers. Our analysis further reveals the underlying mechanism: the introduced reasoning behaviors endow models with more effective exploration (higher pass@k and entropy) and test-time scaling (longer trajectories) capabilities, providing a strong foundation for RL. Our code will be released as open source.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能搜索 推理驱动 行为预训练 搜索模型 效果提升
相关文章