MarkTechPost@AI 10月08日 16:31
Meta AI 发布 OpenZL:一款通用解码器的格式感知压缩框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Meta AI 推出了 OpenZL,一个开源框架,用于构建专门的、格式感知的压缩器。该框架将压缩过程建模为有向无环图(DAG),每个节点代表一个编解码器或图。OpenZL 生成的压缩数据包含一个自描述的图规范,允许任何通用解码器进行解压,从而将压缩器的演进与读取器的部署解耦。这种方法旨在结合领域特定编解码器的压缩比和吞吐量优势,以及单一稳定解码器二进制文件的操作简便性。通过提供数据描述,OpenZL 可以为特定数据结构定制解析、分组、转换和熵编码阶段,实现比现有通用编解码器更优的压缩效果和速度。

💡 OpenZL 是一种开源框架,旨在创建专门的、格式感知的压缩器,通过将压缩管道表示为有向无环图(DAG)来实现。

🚀 该框架通过将压缩器的演进与读取器的部署解耦,实现了操作上的实用性。它通过在每帧数据中嵌入一个自描述的图规范,使得任何 OpenZL 压缩器生成的帧都能被一个通用的解码器读取。

📈 OpenZL 在多种真实数据集上实现了优于当前最先进的通用编解码器的压缩比和速度。这种方法结合了领域特定编解码器的优势和单一、稳定的解码器二进制文件的操作简便性。

🛠️ 开发者可以通过提供数据描述(使用 SDDL 语言)来构建图,OpenZL 会自动组合解析、分组、转换和熵编码阶段,生成自描述帧(压缩字节+图规范)。

How much compression ratio and throughput would you recover by training a format-aware graph compressor and shipping only a self-describing graph to a universal decoder? Meta AI released OpenZL, an open-source framework that builds specialized, format-aware compressors from high-level data descriptions and emits a self-describing wire format that a universal decoder can read—decoupling compressor evolution from reader rollouts. The approach is grounded in a graph model of compression that represents pipelines as directed acyclic graphs (DAGs) of modular codecs.

https://engineering.fb.com/2025/10/06/developer-tools/openzl-open-source-format-aware-compression-framework/

So, What’s new?

OpenZL formalizes compression as a computational graph: nodes are codecs/graphs, edges are typed message streams, and the finalized graph is serialized with the payload. Any frame produced by any OpenZL compressor can be decompressed by the universal decoder, because the graph specification travels with the data. This design aims to combine the ratio/throughput benefits of domain-specific codecs with the operational simplicity of a single, stable decoder binary.

How does it work?

    Describe data → build a graph. Developers supply a data description; OpenZL composes parse/group/transform/entropy stages into a DAG tailored to that structure. The result is a self-describing frame: compressed bytes plus the graph spec.Universal decode path. Decoding procedurally follows the embedded graph, removing the need to ship new readers when compressors evolve.

Tooling and APIs

How does it Perform?

The research team reports that OpenZL achieves superior compression ratios and speeds versus state-of-the-art general-purpose codecs across a variety of real-world datasets. It also notes internal deployments at Meta with consistent size and/or speed improvements and shorter compressor development timelines. The public materials do not assign a single universal numeric factor; results are presented as Pareto improvements dependent on data and pipeline configuration.

Editorial Comments

OpenZL makes format-aware compression operationally practical: compressors are expressed as DAGs, embedded as a self-describing graph in each frame, and decoded by a universal decoder, eliminating reader rollouts. Overall, OpenZL encodes a codec DAG in each frame and decodes via a universal reader; Meta reports Pareto gains over zstd/xz on real datasets.


Check out the Paper, GitHub Page and Technical details. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Meta AI Open-Sources OpenZL: A Format-Aware Compression Framework with a Universal Decoder appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

OpenZL Meta AI Compression Framework Open Source Format-Aware Compression Universal Decoder DAG Data Compression
相关文章