cs.AI updates on arXiv.org 10月08日
LLM生成界面:提升多轮交互效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为Generative Interfaces for Language Models的新范式,通过主动生成用户界面,提升大型语言模型在多轮、信息密集型任务中的交互效率。实验表明,该范式在功能性、互动性和情感体验方面均优于传统聊天界面。

arXiv:2508.19227v2 Announce Type: replace-cross Abstract: Large language models (LLMs) are increasingly seen as assistants, copilots, and consultants, capable of supporting a wide range of tasks through natural conversation. However, most systems remain constrained by a linear request-response format that often makes interactions inefficient in multi-turn, information-dense, and exploratory tasks. To address these limitations, we propose Generative Interfaces for Language Models, a paradigm in which LLMs respond to user queries by proactively generating user interfaces (UIs) that enable more adaptive and interactive engagement. Our framework leverages structured interface-specific representations and iterative refinements to translate user queries into task-specific UIs. For systematic evaluation, we introduce a multidimensional assessment framework that compares generative interfaces with traditional chat-based ones across diverse tasks, interaction patterns, and query types, capturing functional, interactive, and emotional aspects of user experience. Results show that generative interfaces consistently outperform conversational ones, with up to a 72% improvement in human preference. These findings clarify when and why users favor generative interfaces, paving the way for future advancements in human-AI interaction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 用户界面 交互效率 多轮交互 信息密集型任务
相关文章