cs.AI updates on arXiv.org 10月08日
基于语法感知的水印技术识别LLM生成代码
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为STONE的语法感知水印技术,用于识别LLM生成的代码,并分析了现有方法在高熵标记水印中的局限性。通过在非语法标记中嵌入水印,STONE在Python、C++和Java中保持了代码的正确性,并实现了强可检测性和平衡性能。

arXiv:2502.18851v2 Announce Type: replace-cross Abstract: Identifying LLM-generated code through watermarking poses a challenge in preserving functional correctness. Previous methods rely on the assumption that watermarking high-entropy tokens effectively maintains output quality. Our analysis reveals a fundamental limitation of this assumption: syntax-critical tokens such as keywords often exhibit the highest entropy, making existing approaches vulnerable to logic corruption. We present STONE, a syntax-aware watermarking method that embeds watermarks only in non-syntactic tokens and preserves code integrity. For its rigorous assessment, we also introduce STEM, a comprehensive framework that balances three critical dimensions: correctness, detectability, and imperceptibility. Across Python, C++, and Java, STONE preserves correctness, sustains strong detectability, and achieves balanced performance with minimal overhead. Our implementation is available at https://anonymous.4open.science/r/STONE-watermarking-AB4B/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

代码水印 LLM生成代码 语法感知 代码正确性
相关文章