cs.AI updates on arXiv.org 10月08日
Mamba模型在语音增强中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了利用新型无注意力、可扩展的状态空间模型Mamba进行语音增强任务。通过不同配置的回归式语音增强模型以及损失函数的优化,实现了在VoiceBank-DEMAND数据集上优异的PESQ评分,并展示了Mamba在自动语音识别前的预处理优势。

arXiv:2405.06573v2 Announce Type: replace-cross Abstract: This work aims to investigate the use of a recently proposed, attention-free, scalable state-space model (SSM), Mamba, for the speech enhancement (SE) task. In particular, we employ Mamba to deploy different regression-based SE models (SEMamba) with different configurations, namely basic, advanced, causal, and non-causal. Furthermore, loss functions either based on signal-level distances or metric-oriented are considered. Experimental evidence shows that SEMamba attains a competitive PESQ of 3.55 on the VoiceBank-DEMAND dataset with the advanced, non-causal configuration. A new state-of-the-art PESQ of 3.69 is also reported when SEMamba is combined with Perceptual Contrast Stretching (PCS). Compared against Transformed-based equivalent SE solutions, a noticeable FLOPs reduction up to ~12% is observed with the advanced non-causal configurations. Finally, SEMamba can be used as a pre-processing step before automatic speech recognition (ASR), showing competitive performance against recent SE solutions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Mamba模型 语音增强 自动语音识别 状态空间模型 PESQ评分
相关文章