cs.AI updates on arXiv.org 10月08日
LLM原生应用中的生成转换模式研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出对LLM原生应用中的生成转换进行系统研究,通过构建生成转换的分类体系,揭示其组合模式,为LLM应用设计、基准测试和系统开发提供理论基础。

arXiv:2404.09384v3 Announce Type: replace-cross Abstract: The emergence of prompting as the dominant paradigm for leveraging Large Language Models (LLMs) has led to a proliferation of LLM-native software, where application behavior arises from complex, stochastic data transformations. However, the engineering of such systems remains largely exploratory and ad-hoc, hampered by the absence of conceptual frameworks, ex-ante methodologies, design guidelines, and specialized benchmarks. We argue that a foundational step towards a more disciplined engineering practice is a systematic understanding of the core functional units--generative transformations--and their compositional patterns within LLM-native applications. Focusing on the rich domain of software verification and falsification, we conduct a secondary study of over 100 research proposals to address this gap. We first present a fine-grained taxonomy of generative transformations, abstracting prompt-based interactions into conceptual signatures. This taxonomy serves as a scaffolding to identify recurrent transformation relationship patterns--analogous to software design patterns--that characterize solution approaches in the literature. Our analysis not only validates the utility of the taxonomy but also surfaces strategic gaps and cross-dimensional relationships, offering a structured foundation for future research in modular and compositional LLM application design, benchmarking, and the development of reliable LLM-native systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM原生应用 生成转换 软件设计模式 基准测试 系统开发
相关文章