cs.AI updates on arXiv.org 10月08日
AI艺术生成:神经网络架构与模型解析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文深入探讨AI艺术生成领域,分析不同深度神经网络架构和模型,从经典卷积网络到扩散模型,展现其结构、原理及里程碑案例,对比各模型优缺点,展现深度神经网络在艺术生成领域的快速发展。

arXiv:2302.10913v3 Announce Type: replace-cross Abstract: This paper delves into the fascinating field of AI-generated art and explores the various deep neural network architectures and models that have been utilized to create it. From the classic convolutional networks to the cutting-edge diffusion models, we examine the key players in the field. We explain the general structures and working principles of these neural networks. Then, we showcase examples of milestones, starting with the dreamy landscapes of DeepDream and moving on to the most recent developments, including Stable Diffusion and DALL-E 3, which produce mesmerizing images. We provide a detailed comparison of these models, highlighting their strengths and limitations, and examining the remarkable progress that deep neural networks have made so far in a short period of time. With a unique blend of technical explanations and insights into the current state of AI-generated art, this paper exemplifies how art and computer science interact.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI艺术 神经网络 深度学习 扩散模型 艺术生成
相关文章