cs.AI updates on arXiv.org 10月08日
单图预测日常场景下双手3D运动
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种从单张图像预测日常场景下双手3D运动的方法。设计了一种扩散模型将2D手部关键点序列提升至4D手部运动,并通过扩散损失来处理手部运动分布的多模态性。实验结果表明,该方法在多样化数据集上训练,并使用插补标签,相较于最佳基线,在零样本泛化到日常图像方面有显著提升。

arXiv:2510.06145v1 Announce Type: cross Abstract: We tackle the problem of forecasting bimanual 3D hand motion & articulation from a single image in everyday settings. To address the lack of 3D hand annotations in diverse settings, we design an annotation pipeline consisting of a diffusion model to lift 2D hand keypoint sequences to 4D hand motion. For the forecasting model, we adopt a diffusion loss to account for the multimodality in hand motion distribution. Extensive experiments across 6 datasets show the benefits of training on diverse data with imputed labels (14% improvement) and effectiveness of our lifting (42% better) & forecasting (16.4% gain) models, over the best baselines, especially in zero-shot generalization to everyday images.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D手部运动预测 单图识别 扩散模型 手部运动分布
相关文章