cs.AI updates on arXiv.org 10月08日 12:15
LEXPOL:多任务强化学习新架构
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LEXPOL的多任务强化学习新架构,利用文本编码器处理任务元数据,并通过学习门控模块选择或混合多个子策略,实现任务间端到端训练。在MetaWorld基准测试中,LEXPOL在成功率与样本效率上优于多任务基准,且无需针对特定任务进行重新训练。

arXiv:2510.06138v1 Announce Type: cross Abstract: Multi-task reinforcement learning often relies on task metadata -- such as brief natural-language descriptions -- to guide behavior across diverse objectives. We present Lexical Policy Networks (LEXPOL), a language-conditioned mixture-of-policies architecture for multi-task RL. LEXPOL encodes task metadata with a text encoder and uses a learned gating module to select or blend among multiple sub-policies, enabling end-to-end training across tasks. On MetaWorld benchmarks, LEXPOL matches or exceeds strong multi-task baselines in success rate and sample efficiency, without task-specific retraining. To analyze the mechanism, we further study settings with fixed expert policies obtained independently of the gate and show that the learned language gate composes these experts to produce behaviors appropriate to novel task descriptions and unseen task combinations. These results indicate that natural-language metadata can effectively index and recombine reusable skills within a single policy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多任务强化学习 文本编码器 门控模块 元数据 任务间训练
相关文章