cs.AI updates on arXiv.org 10月08日 12:14
低光图像增强:扩散模型综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对低光图像增强技术中的扩散模型进行了全面综述,分析了其性能、部署挑战及未来趋势,并提出了一个包含六个类别的多视角分类法。

arXiv:2510.05976v1 Announce Type: cross Abstract: Low-light image enhancement (LLIE) is vital for safety-critical applications such as surveillance, autonomous navigation, and medical imaging, where visibility degradation can impair downstream task performance. Recently, diffusion models have emerged as a promising generative paradigm for LLIE due to their capacity to model complex image distributions via iterative denoising. This survey provides an up-to-date critical analysis of diffusion models for LLIE, distinctively featuring an in-depth comparative performance evaluation against Generative Adversarial Network and Transformer-based state-of-the-art methods, a thorough examination of practical deployment challenges, and a forward-looking perspective on the role of emerging paradigms like foundation models. We propose a multi-perspective taxonomy encompassing six categories: Intrinsic Decomposition, Spectral & Latent, Accelerated, Guided, Multimodal, and Autonomous; that map enhancement methods across physical priors, conditioning schemes, and computational efficiency. Our taxonomy is grounded in a hybrid view of both the model mechanism and the conditioning signals. We evaluate qualitative failure modes, benchmark inconsistencies, and trade-offs between interpretability, generalization, and inference efficiency. We also discuss real-world deployment constraints (e.g., memory, energy use) and ethical considerations. This survey aims to guide the next generation of diffusion-based LLIE research by highlighting trends and surfacing open research questions, including novel conditioning, real-time adaptation, and the potential of foundation models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

低光图像增强 扩散模型 图像处理 模型性能 部署挑战
相关文章