cs.AI updates on arXiv.org 10月08日 12:14
基于自编码器的ECG异常检测比较分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对比分析了三种基于自编码器的ECG异常检测架构,包括卷积自编码器、变分自编码器结合双向长短期记忆网络和多头注意力机制,并在公开数据集上取得了较好的性能。

arXiv:2510.05919v1 Announce Type: cross Abstract: Anomaly detection in 12-lead electrocardiograms (ECGs) is critical for identifying deviations associated with cardiovascular disease. This work presents a comparative analysis of three autoencoder-based architectures: convolutional autoencoder (CAE), variational autoencoder with bidirectional long short-term memory (VAE-BiLSTM), and VAE-BiLSTM with multi-head attention (VAE-BiLSTM-MHA), for unsupervised anomaly detection in ECGs. To the best of our knowledge, this study reports the first application of a VAE-BiLSTM-MHA architecture to ECG anomaly detection. All models are trained on normal ECG samples to reconstruct non-anomalous cardiac morphology and detect deviations indicative of disease. Using a unified preprocessing and evaluation pipeline on the public China Physiological Signal Challenge (CPSC) dataset, the attention-augmented VAE achieves the best performance, with an AUPRC of 0.81 and a recall of 0.85 on the held-out test set, outperforming the other architectures. To support clinical triage, this model is further integrated into an interactive dashboard that visualizes anomaly localization. In addition, a performance comparison with baseline models from the literature is provided.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ECG 自编码器 异常检测 变分自编码器 长短期记忆网络
相关文章