cs.AI updates on arXiv.org 10月08日
高效线性化Transformer新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出三种高效线性化Transformer的方法,解决现有方法忽视线性组件问题,提高计算效率与模型性能。

arXiv:2510.05901v1 Announce Type: cross Abstract: Transformers' quadratic computational complexity limits their scalability despite remarkable performance. While linear attention reduces this to linear complexity, pre-training such models from scratch remains, in most cases, prohibitively expensive. Recent post-training linearisation methods convert pre-trained Transformers to linear models efficiently, often using hybrid approaches that combine linear attention with sliding-window softmax. We identify a critical flaw: existing hybrid methods inadvertently bypass the linear component, relying almost entirely on SWA. Component-level diagnostics reveal this previously undetected behaviour stems from overlooked evaluation practices on common-sense benchmarks. We propose three solutions to ensure balanced component usage: (i) inference-time hybridisation of linear-only conversions with sliding-window softmax; (ii) HedgeCATs, combining attention-weight transfer with targeted LoRA fine-tuning; and (iii) Scheduled Sliding-window Dropout (SSD), which stochastically suppresses the softmax branch during training to prevent component collapse. Our methods maintain computational efficiency while recovering most base model performance and ensuring genuine linear attention adoption, restoring the validity of performance attributions in hybrid conversions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 线性化 计算效率 模型性能 混合方法
相关文章