cs.AI updates on arXiv.org 10月08日 12:14
持续预训练提升对话摘要性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了持续预训练作为自监督方法在适应大型语言模型(LLMs)用于对话摘要任务中的应用,通过大规模无标签业务对话数据进行实验,验证了持续预训练在领域内和领域外摘要基准测试中的显著性能提升,并提供了持续预训练在摘要应用中的实际指导。

arXiv:2510.05858v1 Announce Type: cross Abstract: Large language models (LLMs) have achieved impressive performance in text summarization, yet their performance often falls short when applied to specialized domains %or conversational data that differ from their original pre-training distribution. While fine-tuning can improve summarization quality, it typically relies on costly and scarce high-quality labeled data. In this work, we explore continual pre-training as a scalable, self-supervised approach to adapt LLMs for downstream summarization tasks, particularly in the context of noisy real-world conversation transcripts. We conduct extensive experiments using large-scale, unlabeled business conversation data to investigate whether continual pre-training enhances model capabilities in conversational summarization. Our results demonstrate that continual pre-training yields substantial gains in both in-domain and out-of-domain summarization benchmarks, while maintaining strong generalization and robustness. We also analyze the effects of data selection strategies, providing practical guidelines for applying continual pre-training in summarization-focused industrial applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

持续预训练 对话摘要 大型语言模型 数据自监督 工业应用
相关文章