cs.AI updates on arXiv.org 10月08日
新型信息提升文本摘要方法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新型的文本摘要方法,旨在提高信息量。通过引入基于最优传输的信息注意力机制和命名实体累积联合熵减少方法,实验结果显示该方法在CNN/Daily Mail数据集上取得了更好的ROUGE分数,且在XSum数据集上表现竞争力。

arXiv:2510.05769v1 Announce Type: cross Abstract: Abstractive text summarization is integral to the Big Data era, which demands advanced methods to turn voluminous and often long text data into concise but coherent and informative summaries for efficient human consumption. Despite significant progress, there is still room for improvement in various aspects. One such aspect is to improve informativeness. Hence, this paper proposes a novel learning approach consisting of two methods: an optimal transport-based informative attention method to improve learning focal information in reference summaries and an accumulative joint entropy reduction method on named entities to enhance informative salience. Experiment results show that our approach achieves better ROUGE scores compared to prior work on CNN/Daily Mail while having competitive results on XSum. Human evaluation of informativeness also demonstrates the better performance of our approach over a strong baseline. Further analysis gives insight into the plausible reasons underlying the evaluation results.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本摘要 信息提升 最优传输 ROUGE分数
相关文章