cs.AI updates on arXiv.org 10月08日
工业物联网中资源受限机器人FedSL框架研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文全面研究了针对工业物联网中资源受限机器人的联邦拆分学习(FedSL)框架,对比了同步、异步、分层和异构FedSL框架,并对融合策略进行了系统分类,提出了优化技术,验证了框架性能,并探讨了未来研究方向。

arXiv:2510.05713v1 Announce Type: cross Abstract: Federated split learning (FedSL) has emerged as a promising paradigm for enabling collaborative intelligence in industrial Internet of Things (IoT) systems, particularly in smart factories where data privacy, communication efficiency, and device heterogeneity are critical concerns. In this article, we present a comprehensive study of FedSL frameworks tailored for resource-constrained robots in industrial scenarios. We compare synchronous, asynchronous, hierarchical, and heterogeneous FedSL frameworks in terms of workflow, scalability, adaptability, and limitations under dynamic industrial conditions. Furthermore, we systematically categorize token fusion strategies into three paradigms: input-level (pre-fusion), intermediate-level (intra-fusion), and output-level (post-fusion), and summarize their respective strengths in industrial applications. We also provide adaptive optimization techniques to enhance the efficiency and feasibility of FedSL implementation, including model compression, split layer selection, computing frequency allocation, and wireless resource management. Simulation results validate the performance of these frameworks under industrial detection scenarios. Finally, we outline open issues and research directions of FedSL in future smart manufacturing systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦拆分学习 工业物联网 资源受限机器人 融合策略 优化技术
相关文章