cs.AI updates on arXiv.org 10月08日
深度伪造检测:基于稀疏表示的解释性方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于稀疏表示的深度伪造检测方法,通过分析AASIST架构的最后一层嵌入,利用TopK激活得到稀疏表示,提高检测性能,并在ASVSpoof5测试集上实现23.36%的EER。

arXiv:2510.05696v1 Announce Type: cross Abstract: Due to the rapid progress of speech synthesis, deepfake detection has become a major concern in the speech processing community. Because it is a critical task, systems must not only be efficient and robust, but also provide interpretable explanations. Among the different approaches for explainability, we focus on the interpretation of latent representations. In such paper, we focus on the last layer of embeddings of AASIST, a deepfake detection architecture. We use a TopK activation inspired by SAEs on this layer to obtain sparse representations which are used in the decision process. We demonstrate that sparse deepfake detection can improve detection performance, with an EER of 23.36% on ASVSpoof5 test set, with 95% of sparsity. We then show that these representations provide better disentanglement, using completeness and modularity metrics based on mutual information. Notably, some attacks are directly encoded in the latent space.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度伪造检测 稀疏表示 AASIST架构 解释性方法 EER
相关文章