cs.AI updates on arXiv.org 10月08日
眼位异常头位自动诊断框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种眼位异常头位(AHP)自动诊断框架,通过深度学习技术实现AHP的自动诊断与缺失数据恢复,提高临床诊断效率和准确性。

arXiv:2510.05649v1 Announce Type: cross Abstract: Ocular-induced abnormal head posture (AHP) is a compensatory mechanism that arises from ocular misalignment conditions, such as strabismus, enabling patients to reduce diplopia and preserve binocular vision. Early diagnosis minimizes morbidity and secondary complications such as facial asymmetry; however, current clinical assessments remain largely subjective and are further complicated by incomplete medical records. This study addresses both challenges through two complementary deep learning frameworks. First, AHP-CADNet is a multi-level attention fusion framework for automated diagnosis that integrates ocular landmarks, head pose features, and structured clinical attributes to generate interpretable predictions. Second, a curriculum learning-based imputation framework is designed to mitigate missing data by progressively leveraging structured variables and unstructured clinical notes to enhance diagnostic robustness under realistic data conditions. Evaluation on the PoseGaze-AHP dataset demonstrates robust diagnostic performance. AHP-CADNet achieves 96.9-99.0 percent accuracy across classification tasks and low prediction errors for continuous variables, with MAE ranging from 0.103 to 0.199 and R2 exceeding 0.93. The imputation framework maintains high accuracy across all clinical variables (93.46-99.78 percent with PubMedBERT), with clinical dependency modeling yielding significant improvements (p < 0.001). These findings confirm the effectiveness of both frameworks for automated diagnosis and recovery from missing data in clinical settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

眼位异常头位 深度学习 自动诊断 缺失数据恢复 临床应用
相关文章