cs.AI updates on arXiv.org 10月08日
TimePD:首个无源域自适应时间序列预测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TimePD,一种基于代理去噪的无源域自适应时间序列预测框架,利用LLMs的泛化能力,实现预训练模型从充足源时间序列到稀疏目标时间序列域的迁移,同时保护数据隐私。

arXiv:2510.05589v1 Announce Type: cross Abstract: The proliferation of mobile devices generates a massive volume of time series across various domains, where effective time series forecasting enables a variety of real-world applications. This study focuses on a new problem of source-free domain adaptation for time series forecasting. It aims to adapt a pretrained model from sufficient source time series to the sparse target time series domain without access to the source data, embracing data protection regulations. To achieve this, we propose TimePD, the first source-free time series forecasting framework with proxy denoising, where large language models (LLMs) are employed to benefit from their generalization capabilities. Specifically, TimePD consists of three key components: (1) dual-branch invariant disentangled feature learning that enforces representation- and gradient-wise invariance by means of season-trend decomposition; (2) lightweight, parameter-free proxy denoising that dynamically calibrates systematic biases of LLMs; and (3) knowledge distillation that bidirectionally aligns the denoised prediction and the original target prediction. Extensive experiments on real-world datasets offer insight into the effectiveness of the proposed TimePD, outperforming SOTA baselines by 9.3% on average.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列预测 域自适应 代理去噪 LLMs 知识蒸馏
相关文章