cs.AI updates on arXiv.org 10月08日
MIDT-ECG:提升心电信号生成可靠性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新型心电信号生成方法MIDT-ECG,通过改进的结构状态空间模型和训练范式,在保持生理结构真实性和隐私保护的前提下,显著提升了心电信号的形态一致性和个性化。

arXiv:2510.05492v1 Announce Type: cross Abstract: The development of machine learning for cardiac care is severely hampered by privacy restrictions on sharing real patient electrocardiogram (ECG) data. Although generative AI offers a promising solution, the real-world use of existing model-synthesized ECGs is limited by persistent gaps in trustworthiness and clinical utility. In this work, we address two major shortcomings of current generative ECG methods: insufficient morphological fidelity and the inability to generate personalized, patient-specific physiological signals. To address these gaps, we build on a conditional diffusion-based Structured State Space Model (SSSD-ECG) with two principled innovations: (1) MIDT-ECG (Mel-Spectrogram Informed Diffusion Training), a novel training paradigm with time-frequency domain supervision to enforce physiological structural realism, and (2) multi-modal demographic conditioning to enable patient-specific synthesis. We comprehensively evaluate our approach on the PTB-XL dataset, assessing the synthesized ECG signals on fidelity, clinical coherence, privacy preservation, and downstream task utility. MIDT-ECG achieves substantial gains: it improves morphological coherence, preserves strong privacy guarantees with all metrics evaluated exceeding the baseline by 4-8%, and notably reduces the interlead correlation error by an average of 74%, while demographic conditioning enhances signal-to-noise ratio and personalization. In critical low-data regimes, a classifier trained on datasets supplemented with our synthetic ECGs achieves performance comparable to a classifier trained solely on real data. Together, we demonstrate that ECG synthesizers, trained with the proposed time-frequency structural regularization scheme, can serve as personalized, high-fidelity, privacy-preserving surrogates when real data are scarce, advancing the responsible use of generative AI in healthcare.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

心电信号 生成模型 隐私保护 个性化 机器学习
相关文章