cs.AI updates on arXiv.org 10月08日
LLM在长文本任务中表现受限
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文发现,即便LLM能够完美检索所有相关信息,其性能仍随着输入长度增加而大幅下降,提出通过提示模型复述检索到的证据来缓解此问题的方法。

arXiv:2510.05381v1 Announce Type: cross Abstract: Large language models (LLMs) often fail to scale their performance on long-context tasks performance in line with the context lengths they support. This gap is commonly attributed to retrieval failures -- the models' inability to identify relevant information in the long inputs. Accordingly, recent efforts often focus on evaluating and improving LLMs' retrieval performance: if retrieval is perfect, a model should, in principle, perform just as well on a long input as it does on a short one -- or should it? This paper presents findings that the answer to this question may be negative. Our systematic experiments across 5 open- and closed-source LLMs on math, question answering, and coding tasks reveal that, even when models can perfectly retrieve all relevant information, their performance still degrades substantially (13.9%--85%) as input length increases but remains well within the models' claimed lengths. This failure occurs even when the irrelevant tokens are replaced with minimally distracting whitespace, and, more surprisingly, when they are all masked and the models are forced to attend only to the relevant tokens. A similar performance drop is observed when all relevant evidence is placed immediately before the question. Our findings reveal a previously-unrealized limitation: the sheer length of the input alone can hurt LLM performance, independent of retrieval quality and without any distraction. They motivate our simple, model-agnostic mitigation strategy that transforms a long-context task into a short-context one by prompting the model to recite the retrieved evidence before attempting to solve the problem. On RULER, we observe a consistent improvement of GPT-4o up to 4% on an already strong baseline.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 长文本任务 性能受限 模型改进 检索策略
相关文章