cs.AI updates on arXiv.org 10月08日 12:10
PIANO:基于物理信息的四维傅里叶神经网络算子
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为PIANO的物理信息增强傅里叶神经网络算子,用于解决太阳物理学中的非线性力自由场问题。该方法直接从二维边界条件学习三维磁场结构,并集成高效通道注意力和扩张卷积,通过物理信息损失函数确保预测与物理规律高度一致。

arXiv:2510.05351v1 Announce Type: cross Abstract: We propose Physics-informed Attention-enhanced Fourier Neural Operator (PIANO) to solve the Nonlinear Force-Free Field (NLFFF) problem in solar physics. Unlike conventional approaches that rely on iterative numerical methods, our proposed PIANO directly learns the 3D magnetic field structure from 2D boundary conditions. Specifically, PIANO integrates Efficient Channel Attention (ECA) mechanisms with Dilated Convolutions (DC), which enhances the model's ability to capture multimodal input by prioritizing critical channels relevant to the magnetic field's variations. Furthermore, we apply physics-informed loss by enforcing the force-free and divergence-free conditions in the training process so that our prediction is consistent with underlying physics with high accuracy. Experimental results on the ISEE NLFFF dataset show that our PIANO not only outperforms state-of-the-art neural operators in terms of accuracy but also shows strong consistency with the physical characteristics of NLFFF data across magnetic fields reconstructed from various solar active regions. The GitHub of this project is available https://github.com/Autumnstar-cjh/PIANO

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PIANO 神经网络算子 太阳物理学 非线性力自由场
相关文章