cs.AI updates on arXiv.org 10月08日 12:10
脑功能磁共振成像数据分析:线性模型与功能分区
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文利用人类连接组计划(fMRI)数据,通过线性机器学习模型分析认知任务中的脑活动,揭示脑区功能分区及其动态连接机制。

arXiv:2510.05325v1 Announce Type: cross Abstract: We analyze functional magnetic resonance imaging (fMRI) data from the Human Connectome Project (HCP) to match brain activities during a range of cognitive tasks. Our findings demonstrate that even basic linear machine learning models can effectively classify brain states and achieve state-of-the-art accuracy, particularly for tasks related to motor functions and language processing. Feature importance ranking allows to identify distinct sets of brain regions whose activation patterns are uniquely associated with specific cognitive functions. These discriminative features provide strong support for the hypothesis of functional specialization across cortical and subcortical areas of the human brain. Additionally, we investigate the temporal dynamics of the identified brain regions, demonstrating that the time-dependent structure of fMRI signals are essential for shaping functional connectivity between regions: uncorrelated areas are least important for classification. This temporal perspective provides deeper insights into the formation and modulation of brain neural networks involved in cognitive processing.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

fMRI 脑功能 机器学习 认知任务 功能分区
相关文章