cs.AI updates on arXiv.org 10月08日
深度学习聚焦框架助力低成本病理扫描
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种基于DeepAf的自动聚焦框架,该框架通过混合架构结合空间和光谱特征,实现单次聚焦预测,有效降低了病理扫描成本,提高了诊断准确性。

arXiv:2510.05315v1 Announce Type: cross Abstract: While Whole Slide Imaging (WSI) scanners remain the gold standard for digitizing pathology samples, their high cost limits accessibility in many healthcare settings. Other low-cost solutions also face critical limitations: automated microscopes struggle with consistent focus across varying tissue morphology, traditional auto-focus methods require time-consuming focal stacks, and existing deep-learning approaches either need multiple input images or lack generalization capability across tissue types and staining protocols. We introduce a novel automated microscopic system powered by DeepAf, a novel auto-focus framework that uniquely combines spatial and spectral features through a hybrid architecture for single-shot focus prediction. The proposed network automatically regresses the distance to the optimal focal point using the extracted spatiospectral features and adjusts the control parameters for optimal image outcomes. Our system transforms conventional microscopes into efficient slide scanners, reducing focusing time by 80% compared to stack-based methods while achieving focus accuracy of 0.18 {\mu}m on the same-lab samples, matching the performance of dual-image methods (0.19 {\mu}m) with half the input requirements. DeepAf demonstrates robust cross-lab generalization with only 0.72% false focus predictions and 90% of predictions within the depth of field. Through an extensive clinical study of 536 brain tissue samples, our system achieves 0.90 AUC in cancer classification at 4x magnification, a significant achievement at lower magnification than typical 20x WSI scans. This results in a comprehensive hardware-software design enabling accessible, real-time digital pathology in resource-constrained settings while maintaining diagnostic accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 自动聚焦 病理扫描 成本降低 诊断准确性
相关文章