cs.AI updates on arXiv.org 10月08日
LLM幻觉检测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于提示工程和嵌入模型的新方法,用于自动检测大型语言模型推理过程中产生的幻觉。通过系统分类和可控复现幻觉类型,结合无监督学习技术对幻觉数据集进行分析,揭示了幻觉信息扭曲程度与正确输出簇的空间差异之间的相关性,为提高模型可靠性提供了有效框架。

arXiv:2510.05189v1 Announce Type: cross Abstract: This work introduces a novel methodology for the automatic detection of hallucinations generated during large language model (LLM) inference. The proposed approach is based on a systematic taxonomy and controlled reproduction of diverse hallucination types through prompt engineering. A dedicated hallucination dataset is subsequently mapped into a vector space using an embedding model and analyzed with unsupervised learning techniques in a reduced-dimensional representation of hallucinations with veridical responses. Quantitative evaluation of inter-centroid distances reveals a consistent correlation between the severity of informational distortion in hallucinations and their spatial divergence from the cluster of correct outputs. These findings provide theoretical and empirical evidence that even simple classification algorithms can reliably distinguish hallucinations from accurate responses within a single LLM, thereby offering a lightweight yet effective framework for improving model reliability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 幻觉检测 嵌入模型 无监督学习 模型可靠性
相关文章