cs.AI updates on arXiv.org 10月08日 12:09
LGO:提升符号回归可解释性与精度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为LGO的逻辑门控算子,用于提升符号回归的可解释性和精度。在两个健康数据集上,LGO能够恢复临床合理的阈值,且所需门控数量少于软门控,同时保持与强基线相当的准确度。

arXiv:2510.05178v1 Announce Type: cross Abstract: Symbolic regression promises readable equations but struggles to encode unit-aware thresholds and conditional logic. We propose logistic-gated operators (LGO) -- differentiable gates with learnable location and steepness -- embedded as typed primitives and mapped back to physical units for audit. Across two primary health datasets (ICU, NHANES), the hard-gate variant recovers clinically plausible cut-points: 71% (5/7) of assessed thresholds fall within 10% of guideline anchors and 100% within 20%, while using far fewer gates than the soft variant (ICU median 4.0 vs 10.0; NHANES 5.0 vs 12.5), and remaining within the competitive accuracy envelope of strong SR baselines. On predominantly smooth tasks, gates are pruned, preserving parsimony. The result is compact symbolic equations with explicit, unit-aware thresholds that can be audited against clinical anchors -- turning interpretability from a post-hoc explanation into a modeling constraint and equipping symbolic regression with a practical calculus for regime switching and governance-ready deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

符号回归 可解释性 LGO 健康数据 阈值
相关文章