cs.AI updates on arXiv.org 10月08日 12:09
6G网络切片攻击溯源新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于域适应的Granger因果框架,用于6G网络切片中的攻击溯源,通过结合统计因果推理和网络资源建模,有效区分真实因果关系与虚假相关性,实现实时攻击溯源,并验证了其高效性和准确性。

arXiv:2510.05165v1 Announce Type: cross Abstract: Cross-slice attack attribution in 6G networks faces the fundamental challenge of distinguishing genuine causal relationships from spurious correlations in shared infrastructure environments. We propose a theoretically-grounded domain-adapted Granger causality framework that integrates statistical causal inference with network-specific resource modeling for real-time attack attribution. Our approach addresses key limitations of existing methods by incorporating resource contention dynamics and providing formal statistical guarantees. Comprehensive evaluation on a production-grade 6G testbed with 1,100 empirically-validated attack scenarios demonstrates 89.2% attribution accuracy with sub-100ms response time, representing a statistically significant 10.1 percentage point improvement over state-of-the-art baselines. The framework provides interpretable causal explanations suitable for autonomous 6G security orchestration.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

6G网络 攻击溯源 Granger因果 域适应 统计因果推理
相关文章