cs.AI updates on arXiv.org 10月08日 12:08
脑肿瘤监测:认知数字孪生框架提升诊断准确率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合实时脑电图信号和结构MRI数据的认知数字孪生框架,利用ViT++、PLAR、自适应阈值机制等创新技术,实现对脑肿瘤的动态和个性化监测,并通过Bidirectional LSTM和Grad-CAM技术提升诊断准确率。

arXiv:2510.05123v1 Announce Type: cross Abstract: Neuro-oncological prognostics are now vital in modern clinical neuroscience because brain tumors pose significant challenges in detection and management. To tackle this issue, we propose a cognitive digital twin framework that combines real-time EEG signals from a wearable skullcap with structural MRI data for dynamic and personalized tumor monitoring. At the heart of this framework is an Enhanced Vision Transformer (ViT++) that includes innovative components like Patch-Level Attention Regularization (PLAR) and an Adaptive Threshold Mechanism to improve tumor localization and understanding. A Bidirectional LSTM-based neural classifier analyzes EEG patterns over time to classify brain states such as seizure, interictal, and healthy. Grad-CAM-based heatmaps and a three.js-powered 3D visualization module provide interactive anatomical insights. Furthermore, a tumor kinetics engine predicts volumetric growth by looking at changes in MRI trends and anomalies from EEG data. With impressive accuracy metrics of 94.6% precision, 93.2% recall, and a Dice score of 0.91, this framework sets a new standard for real-time, interpretable neurodiagnostics. It paves the way for future advancements in intelligent brain health monitoring.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑肿瘤监测 认知数字孪生 ViT++ 诊断准确率 神经诊断
相关文章