cs.AI updates on arXiv.org 10月08日
SAT-Graph API:法律领域结构感知时序图检索增强生成新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SAT-Graph API,用于法律领域结构感知时序图检索增强生成,通过提供可验证的知识图谱,解决标准检索增强生成在法律领域的核心局限。该API采用形式化查询执行层,实现高精度混合搜索、稳健的引用解析、点时间版本检索和可审计的因果追踪,有助于提高可解释人工智能(XAI)在法律高风险领域的应用。

arXiv:2510.06002v1 Announce Type: new Abstract: The Structure-Aware Temporal Graph RAG (SAT-Graph RAG) addresses core limitations of standard Retrieval-Augmented Generation in the legal domain by providing a verifiable knowledge graph that models hierarchical structure, temporal evolution, and causal events of legal norms. However, a critical gap remains: how to reliably query this structured knowledge without sacrificing its deterministic properties. This paper introduces the SAT-Graph API, a formal query execution layer centered on canonical actions-atomic, composable, and auditable primitives that isolate probabilistic discovery from deterministic retrieval. These actions enable: (i) high-precision hybrid search; (ii) robust reference resolution; (iii) point-in-time version retrieval; and (iv) auditable causal tracing. We demonstrate how planner-guided agents can decompose complex queries into Directed Acyclic Graphs (DAGs) of these actions. This two-layer architecture transforms retrieval from an opaque black box to a transparent, auditable process, directly addressing Explainable AI (XAI) requirements for high-stakes domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

法律领域 检索增强生成 结构感知时序图 知识图谱 可解释人工智能
相关文章