cs.AI updates on arXiv.org 10月08日
FETA:无监督时间序列分类新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为FETA的无监督时间序列分类新框架,通过基于样例的上下文推理实现无需训练。FETA能够高效地处理多变量时间序列,并通过推理大语言模型进行标签预测,在多个数据集上实现了优异的准确率。

arXiv:2510.05950v1 Announce Type: new Abstract: Time series classification (TSC) spans diverse application scenarios, yet labeled data are often scarce, making task-specific training costly and inflexible. Recent reasoning-oriented large language models (LLMs) show promise in understanding temporal patterns, but purely zero-shot usage remains suboptimal. We propose FETA, a multi-agent framework for training-free TSC via exemplar-based in-context reasoning. FETA decomposes a multivariate series into channel-wise subproblems, retrieves a few structurally similar labeled examples for each channel, and leverages a reasoning LLM to compare the query against these exemplars, producing channel-level labels with self-assessed confidences; a confidence-weighted aggregator then fuses all channel decisions. This design eliminates the need for pretraining or fine-tuning, improves efficiency by pruning irrelevant channels and controlling input length, and enhances interpretability through exemplar grounding and confidence estimation. On nine challenging UEA datasets, FETA achieves strong accuracy under a fully training-free setting, surpassing multiple trained baselines. These results demonstrate that a multi-agent in-context reasoning framework can transform LLMs into competitive, plug-and-play TSC solvers without any parameter training. The code is available at https://github.com/SongyuanSui/FETATSC.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列分类 无监督学习 大语言模型 FETA框架 上下文推理
相关文章